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Gas-ionizing shock and combustion waves in 
magnetogasdynamics 

By J. B. HELLIWELL 
Department of Nathematics, The Royal College of Science and Technology, Glasgow 

(Received 5 April 1962) 

Some general properties of one-dimensional deflagration waves in a non-con- 
ducting inviscid gas at rest are discussed when ionization of the gas takes place 
across a shock wave which precedes the flame front, and electromagnetic fields 
are present. The direction of wave propagation, the electric field and magnetic 
field are taken as a mutually orthogonal triad of vectors. The jump relationships 
across the gas-ionizing shock wave and magnetogasdynamic combustion wave 
are investigated and the two Hugoniot curves analysed in detail in the pressure- 
specific volume plane. The possible types of wave are indicated for arbitrary 
magnitudes of the upstream electromagnetic field. It is shown that weak gas- 
ionizing shock waves cannot exist. For suitably chosen electromagnetic field 
strengths the density ratio across the shock wave may be greater than the 
ordinary gasdynamic limit and, in such cases, the pressure and density ratios 
are related in an inverse manner, in contrast to the behaviour for ordinary 
gasdynamic or magnetogasdynamic shock waves. The magnetogasdynamic 
combustion wave has similar properties to that in ordinary gasdynamics. 

1. Introduction 
The properties of shock waves in gases with infinite electrical conductivity 

are well understood. The fundamental discontinuity relationships across the 
shock front have been examined and classified by Bazer & Ericson (1959) among 
others. The underlying structure which is the limit of a certain continuous fluid 
motion with finite values of viscosity, magnetic viscosity and heat conductivity 
has been investigated by Ludford (1959) and others. As a consequence of the 
infinite electrical conductivity unsupportable large values of the current develop 
on either side of the wave unless the electric and magnetic fields, E and H, are 
related by 

where v is the fluid particle velocity and ,U is the permeability. Here and in all 
subsequent equations m.k.s. Giorgi units of electromagnetic measurement are 
used. 

However, if the temperature of the gas ahead of the shock wave is below a 
certain value it will not be ionized and its conductivity will be zero. For a mon- 
atomic gas the ionization temperature is approximately lo4 deg K. Nevertheless, 
if a strong shock wave propagates into such a cold gas it is quite possible for the 
temperature to be raised above this value so that behind the wave the conduc- 

(1) E+,uvxH = 0 ,  
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tivity of the gas becomes high. In  particular such phenomena may be expected 
to arise in deflagrations and detonations in which a large rise in temperature 
occurs across the shock wave preceding the flame front in a deflagration, or across 
the detonation front itself. In  waves with a discontinuity of electrical con- 
ductivity across the front, which in an idealized case may be supposed to jump 
from zero ahead to infinitely large values behind, equation (1) must apply in the 
ionized region. Ahead of the wave, in view of the non-conductivity the current 
is zero in any case. Of course in actual practice no gas is either perfectly in- 
sulating or perfectly conducting and a theory based upon such idealizations 
may only be expected to have relevance when the magnetic Reynolds numbers 
ahead of and behind the front are respectively very much less than and greater 
than unity. The choice of that particular physical measurement to be taken as 
the typical length in the calculation of these magnetic Reynolds numbers is 
a problem of some complexity and is not discussed generally here. Such a relevant 
length might be, for instance, the distance over which sufficient ionization occurs 
for the gas to become highly conducting.-f 

The analysis of strong steady gas-ionizing shock waves was first reported by 
Liubimov (1959) and since that time further studies, chiefly by Russian scientists, 
have given considerable insight into the phenomena. It was shown by Liubimov 
& Kulikovsky (1960) that ahead of the ionizing shock wave there radiates a 
purely electromagnetic wave the character of which depends essentially upon 
the relative magnitudes of the dissipation coefficients and temperature in the 
upstream gas. Behind this wave the electromagnetic field is so adjusted as to 
permit the derivation of aunique solution, based upon considerations of the shock- 
wave structure, to unsteady problems such as, for example, the motion of a 
one-dimensional piston. In  these papers the electromagnetic field was taken 
transverse to the wave front. A more general statement of the fundamental 
relations across a steady gas-ionizing shock wave with arbitrary orientation of 
the electromagnetic field ahead has been given by Zhilin (1960). Analogous 
relations have been derived by Helliwell & Pack (1962) for the general case of 
an unsteady curved shock or combustion wave. In  this paper Zhilin goes on to 
show by means of two examples, that, even when the second law of thermo- 
dynamics is satisfied, such an arbitrarily specified electromagnetic field does not 
necessarily give rise to a steady shock wave. This result was already suggested 
by the work of Liubimov & Kulikovsky. In  particular Zhilin demonstrates that 
this is so when the upstream electric field is zero as measured in a system of axes 
moving with the wave front. Thus, as he pointed out, the steady gas-ionizing 
shock wave originally studied by Liubimov (1959) has no physical existence. 

In  the present paper an analysis is made of the Hugoniot curves for certain 
types of gas-ionizing shock and combustion waves. These waves are examined 
in the context of a thermally non-conducting inviscid gas. Thus the very narrow 
transitional regions, in the flow of a real gas, within which steep gradients of the 
variables of state occur are replaced by surfaces across which these quantities 
are mathematically discontinuous. From a study of the discontinuities across 
such a surface, commonly termed a shock wave, information may be obtained 

t I am indebted to a referee for this remark. 
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relating to the complete transition in the associated real-gas flow. The electro- 
magnetic radiation wave ahead of the shock wave is not considered. The electric 
and magnetic fields behind this radiation wave are supposed mutually per- 
pendicular and both orthogonal to the wave front, and may be of arbitrary 
magnitudes. In  view of the remarks in the preceding paragraph some justifica- 
tion is required for this assumption. The analysis of Liubimov & Kulikovsky 
(1960) of the wave structure shows that steady shock waves may exist (in the 
sense that they are the limiting forms of some continuous flow) provided that 
the magnitudes of the electric and magnetic fields upstream are suitably related. 
The relationships are of three types depending upon the relative magnitudes of 
the kinematic viscosity, magnetic diffusivity and heat conductivity in the 
continuous flow. Two of these types lead to ordinary gas dynamic and magneto- 
gasdynamic shocks, respectively. In  the third type the relationship is of the form 
E+,uvi x H = 0 where vi is the velocity at which the temperature of the gas, 
within the transition region associated with the shock wave, attains the value 
for ionization. This case may clearly give rise to a wide range of values for EIH. 
Thus, in any particular instance, from the various possible Hugoniot adiabatic 
curves, which follow, should be selected that one with the relevant value as given 
by an analysis of the radiation wave, 

2. A model deflagration and detonation 
First we describe a one-dimensional model of a deflagration consisting of a 

combustion wave in which chemical energy is released and ahead of which a 
shock wave develops in the unburnt gas. Such a model would, for instance, be 
relevant to the problem of deflagration in a tube closed by a piston which moves 
into the gas. The release of energy a t  the flame front causes an expansion of the 
gas and a compressive wave is thus driven by the piston into the unburnt gas 
ahead of the combustion. The gas ahead of the shock wave is supposed a t  rest 
and non-conducting, cr = 0 where (T is the conductivity. In  this region mutually 
orthogonal electric and magnetic fields are assumed to exist, themselves normal 
to the direction of propagation of the waves. This shock is supposed sufficiently 
strong to ionize the gas so that behind it the conductivity cr = 00. It is called a 
gas-ionizing shock wave. The flame front which propagates into the region behind 
the shock may thus be studied on the basis of pure magnetogasdynamics in 
a manner completely analogous to that of ordinary gasdynamics, since on both 
sides of it the gas is highly conducting, IT = 00. The regions of gas, unburnt 
ahead of the shock wave, unburnt between the shock and combustion wave and 
burnt behind the combustion wave are referred to by the suffices 0,  1 and 2, 
respectively. The velocities of the shock and combustion fronts are written 
V* and W* in a system of axes fixed in the upstream gas with x-axis normal to 
the wave fronts and y-, z-axes along the directions of the upstream electric and 
magnetic fields, respectively. All other quantities measured relative to this 
system of axes are denoted by an asterisk. The particle velocity of the gas is 
indicated by the symbol U. Thus U: = U:i (r = 0,1 ,2) ;  EZ = 3; j; H; = H,* k. 
The situation is shown schematically in figure 1. 

The model of a detonation wave is similar to that described above. Essentially 
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the combusion and shock waves coalesce so that across a single front the con- 
ductivity increases from CT = 0 to cr = 00. At the front there is a release of exo- 
thermal energy. The region 1 vanishes and V* = W*.  

Across any discontinuity of the above type the jump relationships in the gas- 
dynamic and electromagnetic variables take the same general form. We use 
[XI to denote the change in the value of X across the discontinuity. Variables 
without an asterisk are referred to axes relative to which the discontinuity is a t  

(2) 

- u,' 

U = m  -IF'* ~ = m  - V' o= 0 

Flame Shock 
FIGURE 1. Model deflagration. 

rest. Then (see, for example, Helliwell & Pack 1962) the various conservation 
equations lead to the following: 

[Hnl = 0, 

[m] = [pun1 = 0, (26) 

[ m U + ( p + + p H 2 ) n - p H , H ]  = 0, ( 2 c )  

[m(+U2+p/p+b)+(ExH)n]  = mQ, ( 2 4  
( 2 e )  

Here n is the unit vector directed downstream normal to the wave front, m is 
the mass flowlunit area, p is the pressure, p is the density and & is the specific 
internal energy of the gas. The quantity Q is the exothermal energy per unit 
mass released a t  the flame front. In  actual fact at  the gas-ionizing shock front 
a certain energy of ionization is absorbed by the gas and Q < 0 may be used to 
represent this at  the shock wave. However, the value is small and in this paper 
it is neglected. In  addition to equations ( 2 )  the condition (1) holds in all regions 
where cr = co. 

[n x El = 0. 

3. A gas-ionizing shock wave 
A system of axes is chosen in which the shock front is at  rest. Thus relative to 

an absolute system fixed in space the new system moves with a velocity V*i. 
Since V* is small compared with the speed of light, the relativistic change in the 
electromagnetic fields yields H, = H:, E, = E: +p( V*i x HF) for r = 0, 1. 
Equation ( 1 )  leads to 

(3) El = -pu1(fflJ -ff,,k), 
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where subscripts x, y, z denote the respective component of H,. Now from equa- 
tions ( 2  e )  we have El, = 0. 

Therefore E, = E , j .  It follows from equation (3)) considered with equation 
(2a ) ,  that 

Hlat = 0 = Hlx. 

Thus H, = H,k .  The electric and magnetic fields throughout the flow therefore 
remain in their original orientations transverse to the wave front. It follows that 
the jump relations (2b-e) with equations (3) and no exothermal energy release 
become m = U, /T~  = U,/T,, 

mU, + p ,  + ipH2, = mu, +po + +pH:, 

m(+v; + p , ~ ,  + 8,) -El H, = m(+Ui +po70 + 8,) - E, H,, 
-,LLU,H, = El = Eo. 

(46) 

(4c )  

(4d) 

Here T = l f p  is the specific volume of the gas. The relationships between the 
electromagnetic fields, pressure, density and velocity of the gas particles 
measured in the two systems of co-ordinates are 

H , = H $ k ,  E,= ( E $ - p V * H : ) j ,  p , = p : ,  p,=p:, U,=-(V*-Uu,*)i, 

for r = 0 , l .  In particular if the upstream gas is a t  rest in the absolute system 
U, = - V*i. 

The modified Hugoniot  curve 

( 5 )  

From equations ( 4 b , c )  we find 

t(q+ V,) [ ( ~ ~ - P , ) + B I I ~ ( H ~ - H ~ ) I + ~ [ ( P ~ T ~ - P ~ ~ ~ ) + ( ~ ~ - - ~ ) I  
- (El HI - E, H,) = 0. 

Thus, using equations ( 4 a , d )  to eliminate m and E,, El,  respectively, after a 
little algebra we obtain 

€ 1 - 8 o + + ( 7 1 - 7 0 )  ( ~ 1 + ~ o ) - M 7 1 + ~ 0 )  ( H ~ , - H ~ + , L L ~ ~ H ~ ( H ~ - H O )  = 0. 

For a given equation of state which defines & = b(p,  7 )  this is the relationship 
between (pl, 7,) which is analogous to the Hugoniot adiabatic of ordinary gas- 
dynamic shock-wave theory. In  the following pages it is termed the modified 
Hugoniot curve. 

A more convenient form is obtained if first we introduce a new variable, 2, 
such that 

E, = pUo&. 

Then as a consequence of equations (4a, d )  it follows that 

Hl = - 8 ( ~ , / 7 ~ ) .  (7 )  

It should be noted that when 2 + H o  = 0 the expression ( 6 )  relates the electric 
and magnetic fields upstream in the same manner as if the gas upstream had been 
perfectly conducting. Such shock waves would then be identical with what might 
be termed purely magnetogasdynamic shocks where the gas is highly conducting 
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on both sides. However, in general, with Hl replaced in terms of 3? by equation 
(7) the modified Hugoniot curve becomes 

€1 - €0 + Q(71- 7 0 )  (PI +PO) - i,471+ 7 0 )  [fl2(7o/71)' - H 3  
+ P 7 0 f l ( X T 0 / 7 1 + & )  = 0. (8) 

The perfect gas 

In  what follows, to simplify the analysis and yet retain the essential features of 
the model, it  is supposed that the gas is perfect throughout the entire flow but 
that the ratio of specific heats, y = cp/cv, may take different constant values on 
either side of the front such that y1 < yo (see, for example, Hayes & Probstein 
1959). The range of values of y for gases of physical interest is restricted to 
1 < y1 < yo < 2. Then we have gr = pr7,/(yr- 1) for r = 0 , l .  A further advan- 
tageous change of notation may now be made. Let us write the speed of sound 
upstream of the wave as a, = (yp070)6. Then we define in the upstream region 
non-dimensional Alfvkn and pseudo-Alfvkn speeds by 

a = H0(~70)9/ao, P = f l ( ~ o ) * / a o ,  ( 9 )  

respectively. The case of a magnetogasdynamic shock wave is now represented 
by a + p = 0. The case originally investigated by Liubimov (1959) is given by 
/3 = 0. Next introduce the further dimensionless speeds, u,, such that V,  = urao 
for r = 0 , l .  

The insertion of the above notation into equations (4a, b, c) followed by a little 
algebraic manipulation leads to the following forms of the jump relations across 
the gas-ionizing shock wave: 

u170 = u071, (10a )  

In  a similar manner the equation (8) for the modified Hugoniot curve is found 
to be 

We now investigate the properties of this curve. First we note that on it 

Thus the curve passes below the point in the (p,,~,)-plane corresponding to 
upstream conditions in contrast with the property of the corresponding curve 
for ordinary gasdynamic and magnetogasdynamic shocks. Hence it is not 
possible for a weak gas-ionizing shock wave to progagate without finite changes 
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in pressure (or density) unless the electromagnetic field is itself an infinitesimal. 
The asymptotes of the curve (11) are 

The first of these is independent of (a,p) and thus identical with the corre- 
sponding ordinary gas dynamic asymptote. The second is, however, different, 
but is independent of p. In  all the above respects the modified Hugoniot curve 
resembles the gasdynamic Hugoniot curve for combustion with an absorption 
instead of release of energy a t  the wave front. 

Next we write equation (1 1) in the following formf 

(14) 

where 

Thus, when F(a, p )  = 0, the modified Hugoniot curves are 

The latter gives negative values of the pressure ratio for all values of the density 
ratio which may be associated with real gases, viz. 71/70 2 0. Although such 
pressure ratios are physically impossible we retain the theoretically possible 
formal values in order to describe the modified Hugoniot curves for which 
F(a,  p )  + 0. In  the (a, p)-plane it is observed that the curve for which F(a,  p) = 0 
is a hyperbola with centre a t  the origin and asymptotes 

It is shown in figure 2 for a typical case 1 < yo, y1 < 2. It is seen that this curve 
divides the (a,p)-plane into two regions, interior and exterior to the hyperbola, 
labelled I and I1 in figure 2 .  For values of (a, p )  in regions I, I1 it is easily verified 
that $’(a, p) 0, respectively. 

We now proceed to discuss the general shape of the modified Hugoniot curves, 
using the singular curves (equations (16) and (17)) for which F(a,p)  = 0 and 

For this suggestion and consequent improvement upon my original analysis I am 
indebted to a referee. 
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PI 
P O  
- 

FIGURE 2. The (a ,  p)-plane. 

.' I 

(iii) 

FIGURE 3. Modified Hugoniot curves: ---- , Poisson isentrope; --, Hugoniot curve 
(region I, figure 2) ; - - - -, Hugoniot curve (region 11, figure 2 )  ; -, singular curves. 
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figure 2. The singular curves are shown with thick lines in figure 3. It is a simple 
matter to  draw in the same figure the modified Hugoniot curves corresponding 
to F(a,P) 2 0. First, we note that for a given value of pl/po the equation (14) 
for 71/70 is a cubic. Now for F(a,,8) < 0 the modified Hugoniot curve (14) lies 
above the singular curve (17) when > (yl - l)/(yl+ 1)  and below when 
0 < 71/70 < (yl - l)/(yl + 1). Thus it follows that for values of (a, P) in region I 
of figure 2 the modified Hugoniot curves (T,/T, > 0 )  consist of the two branches 
shown with thinner unbroken lines in figure 3. The curves for values of (a,/3) 
in region I1 of figure 2 similarly consist of the two branches shown with thinner 
broken lines in figure 3. A total of four such curves are shown in the figure for 
different values of F(u,  p) and are labelled (i), (ii), (iii), (iv), respectively. 

The entropy restriction 

According to the second law of thermodynamics only those gas-ionizing shock 
waves may occur physically across which the entropy of the gas does not decrease 
on passing downstream. Thus among the general relations shown in figure 3 
only those jumps are possible such that s1 2 so where s is the specific entropy. 
For an isentropic change of state from the upstream conditions the relationship 
between the pressure p and specific volume 7 is given by p /po  = ( 7 0 / 7 ) ~ 0 .  This is 
commonly termed the Poisson isentrope. For any change of state with increase 
of entropy the corresponding relationship is p / p o  > ( T ~ / T ) ~ o .  Thus, if the Poisson 
isentrope is superimposed upon figure 3, only those parts of the modified Hugoniot 
curves which lie above the Poisson isentrope may be associated with real ioniza- 
tion fronts. It is now clear, by reference to figure 3, that weak gas-ionizing shock 
waves cannot exist. The actual location of the point of intersection of the Poisson 
isentrope and modified Hugoniot curves cannot be determined explicitly. If it 
is supposed that at this point the specific volume is r* then, by equating the 
pressures on the two curves we find the value is given by the root (0  < T * / T ~  < 1) 
of the equation 

The mass flow restriction 

An additional restriction upon the possible range of density ratio across a gas- 
ionizing shock front is given by the requirement that the mass flow through the 
wave must be real and positive (it may be zero in a nugatory case). From equa- 
tions (10) it  is straightforward to show that the mass flow, m, is given by 

Therefore, since T ~ / T ~  < 1, for a real mass flow the condition is 
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If the expression for pl/po in terms of T ~ / T ~  from equation (1 1) is now inserted 
and the inequality rearranged it may be shown that the mass flow is real when 

( T , / T ~  - ~~/7**) (7 / r  - 70/7***) 
0 1 -  < 0,  

r o b 1  - (71 + l)/(r1- 1) 
where, respectively, 

w 1 -  1)Cq3-(75-1)/(?0-1)1 [ { (y l - l )~p- (y l - l ) / (y~ - l ) }2  
7 0  - - -~ +2(YlLYl) (2 -71 )P2(1  +Y0"2/2)14* 

~ -- 

( 2  - Yl) P2 T**' 7*** 

For values of y in the range 1 < yo, y1 < 2, clearly 70/7*** < 0. Hence the density 
ratio is restricted as follows: 

(19) 

I for F(a,  /3) < 0 ,  region I (figure 2): 

I for F(a,/3) > 0,  region I1 (figure 2): 

7 * * / 7 0  < ~ ~ 7 0  < (71 - l ) / ( ~ l +  1). I 
These ranges exist only if (yl - l)/(yl + 1) 2 r**/r0 in the respective cases. By 
writing 7 * * / ~ ~  in terms of (a, p) from equation (19) and after some algebra it can 
be shown that this is so provided $'(a,/?) 2 0,  respectively, which is indeed the 
case. Thus the range of T ~ / T ~  on the modified Hugoniot curve, already restricted 
from considerations of entropy, is restricted further under the following con- 
ditions: 

(21) I for F(a,/3) < 0,  region I (figure 2): 

(yl - l)/(yl + 1) < T ~ / T ~  < min (7*/70, 7**/70); 

for F(a,P)  > 0, region I1 (figure 2 ) :  

max (7*/70, 7**/70) < 71/70 < (71- l)/(?i f l). 

It has not proved possible to analyse these conditions further for general 
values of (a,P). However, in the case analogous to an ordinary magnetogas- 
dynamic shock in a perfectly conducting gas with y1 = yo it  is not difficult to 
show that the mass-flow requirement does not add any further restriction. In  
this case, when a + /3 = 0,  the appropriate domain of the (a,  P)-plane is region I. 
Since at 71/70 = 1, pl/po = 1 the entropy requirement is 

( 7 0 -  l)/(yo+ 1) 71/70 1 

and from equations (19) and (20) the mass-flow requirement is the same. Thus 
any magnetogasdynamic shock wave which satisfies the second law of thermo- 
dynamics is physically possible. In  a similar manner the case y1 = yo and p = 0 
may be investigated. The inequalities corresponding to  (20) are respectively 
T ~ / T * *  = 1 +ya2/2 2 T ~ / T ~  (yo + l)/(yo - 1). If it  is noted from equation (15) 
that F(a,  p) = 0 for yo(yo - 1) a2 = 4, p = 0 we may deduce the following pro- 
perties of the function y(ro/r*) defined by equation (18). First, y(  1)  < 0. Secondly 
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y(  1 + yoa2/2) 2 0 according as yo(yo - 1) a2 2 4. Thus it follows that the root of 
equation (18) which defines the entropy restriction satisfies T ~ / T *  5 T ~ / T * *  

according as yo(yo - 1) a2 2 4, that is according as (a, p) lies in region I or I1 of 
the (a ,  ,5)-plane, respectively. Hence, in this case also, mass-flow considerations 
introduce no further restrictions. Indeed in several other cases investigated 
numerically the condition of real mass flow is found to yield no additional 
restriction, and it is conjectured that this may hold generally. Nevertheless, in 
the absence of a complete analysis, for any particular values of (a,  /3) the results 
of this paragraph should be taken into account and inequalities (21) used to 
define the possible range of density jumps across the fronts. 

Summary of results 

Upstream of the gas-ionizing shock wave, which moves into a perfect gas at  rest, 
the electromagnetic field is denoted by the parameters (a, p) defined by equations 
(6) and (9). The case a + p = 0 is analogous to a magnetogasdynamic shock wave 
in a perfectly conducting gas. The case /3 = 0 corresponds to a flow with zero 
upstream electric field relative to an observer moving with the shock wave itself. 
The behaviour of the discontinuity is essentially different for differing (a,P) 
depending upon the domain of the (a,  P)-plane in which any particular values lie, 
as shown in figure 2. The modified Hugoniot curves corresponding to the various 
regions are shown in figure 3. 

For (a,  p) in region I, the general behaviour is similar to that in ordinary gas- 
dynamics, with the following differences. At T ~ / T ~  = 1, p , / ~ ~  < 1 with equality 
only in the case a +p = 0 with y1 = yo. For any other values of (a,  p) there is an 
upper limit ( <  1) to the density ratio, and a lower limit ( >  1) to the pressure 
ratio across the shock. These limits are given by inequality (21). The overall 
maximum possible density ratio is (yl + l)/(yl - 1) as in ordinary and magneto- 
gasdynamics. 

For (a,  p) in region I1 the behaviour is markedly different from that in ordinary 
gasdynamics. I n  such cases the density ratio is always greater than 

(Y1+ 1)/(?5-1), 

the minimum possible value being given by the inequality (21). Further, in 
contrast with the previous case, the pressure and density ratios across the gas- 
ionizing shock front are related inversely so that a larger pressure ratio is associ- 
ated with a smaller density ratio, and conversely. Such a relationship, first 
noted by Liubimov (1959) is completely different from that for any other known 
type of shock wave. 

4. A magnetogasdynamic combustion wave 
The analysis of the combustion wave is similar to that already carried through 

for the shock wave behind which the electrical conductivity of the gas is supposed 
infinite. Thus the combustion wave propagates into a fully ionized gas and we 
shall refer to it as a magnetogasdynamic combustion wave. In  this case the 
relationship (1)  holds on both sides of the wave. As indicated in figure 1 the 
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variables ahead and behind the wave front are denoted respectively by the 
suffices 1 and 2. 

A system of axes is chosen moving with the combustion front, that is the 
velocity of the new set relative to the absolute set of axes is W*i. Then, referred 
to the new axes the components of the electric fields are given by 

E, = E: -pW*H,, 

and the particle speeds by U, = W* - U: for r = 1,2 .  It should be noted that for 
these variables q5, = U,, E, in the present section the interpretation of q51 is in 
general different from that in the previous section. These should be no confusion 
however. For the gas-ionizing shock front q51 = fn (V*,  4;) and for the com- 
busion front q51 = fn ( W*, q5:), where the interpretation of @ is common, namely, 
the value referred to an absolute system of axes. It then follows exactly as before 
that there is no rotation of the electric or magnetic fields across the wave front. 
Equations (5) may now be used to relate the values of the several variables defined 
in the absolute and moving systems of axes provided that we replace the suffices 
( 0 , l )  by (1,2) and write W* for V* throughout. Thus, when exothermal energy 
of amount Q per unit mass is released at  the flame front the inclusion of the 
condition (1) into the jump relations (2) leads to 

m = U2/r2 = U1/r1, (22 a )  

mu2 +p2 + +pH; = mul +pl + +pH:, 

m(+G +p2 r2 + 8,) - E2 H2 = m(+ UZ, +PIT1 + a,) - El Hl + mQ, 

-,LLU,H, = E2 = El = -,LLU,H~. 

(22b) 

(22 c) 

( 2 2 4  

From equations (22 a, d )  follows the well-known magnetogasdynamic property 
that the magnetic field is 'frozen' into the fluid, and 

H21Hl = UJU, = r1/r2. (23) 

The modified Hugoniot curve for combustion then follows from equations 
(22b,c) and upon elimination of H2 by means of equation (23), becomes 

€2 - €1 + +(72 - 71) ( ~ z  +pi) - i~H1(72 + 71) [ ( ~ i / ~ z ) ~  - 11 + ~1HZ,[(71/72) - 11 = Q. 
(24) 

(25) 

Consider the jump relations (22). If we write 

p i  = p ,  + $pH:, €; = 8, + +~H:T, ,  

for r = 1,2  they become 
m = U2/r2 = Ul1r1, 

m(Uz-Ul)+(P;.-P;) = 0, 

Q(U;-  U Z , ) + ( & ~ + P ~ T ~ ) - ( & ; + P ; ~ ~ )  = Q. 
These are identical with the standard equations across a flame front in ordinary 
gasdynamics for a fictitious gas whose equation of state is defined by equations 
(25). The properties of such waves may thus be determined by a suitable applica- 
tion of ordinary flame analysis, see, for example, Courant & Friedrichs (1949). 
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For instance, a steady-stage detonation wave is associated with the Chapman- 
Jouguet point on the modified Hugoniot curve for combustion, where 

-P:c; = dpJd.2 = ( P ; - P ~ ) / ( T ~ - T ~ )  = -pi U;, 

and c2 is the speed of propagation of small disturbances behind the flame front 
in this fictitious gas. But corresponding to the conservation equation H27, = H,T, 
we have the differential relationship d(H7) = 0. Thus 

ci = - (l/p:) d&/d72 = dp2/dp2 +pHE/p2 = a; + @, 

where b, is the Alfv6n speed behind the flame front. We have therefore deduced 
the result obtained previously by Gross, Chinitz & Rivlin (1960) that in a steady- 
state magnetogasdynamic detonation wave the wave front moves with ‘mag- 
netosonic ’ speed relative to the products of combustion. Whilst similar results 
could be obtained by similar use of the fictitious gas, nevertheless, it  is instructive 
to analyse explicitly the properties of the Hugoniot curve. 

The perfect gas 
Although the burning of the gas at  the flame front may be expected to change its 
thermodynamic properties, for simplicity i t  is supposed that the gas remains 
perfect but the ratio of specific heats, y, suffers a discontinuity at the wave front. 
It is known that, in general, 1 < y, < y1 < 2 .  Then the specific internal energy 
b, = p,7,/(y,- 1) for r = 1,2. At this stage it is convenient to introduce a dimen- 
sionless notation in terms of the speed of sound upstream, a, = (y1p171)*, as unit 
of measure where al/ao = ((yl/yo) (pl/po) (71/70)}*. Thus, upstream of the front the 
Alfvhn speed is 

Also set W* = w*al, V,  = u,al for r = 1,2 and Q = qat. In  terms of these quan- 
(26) 6 = IH1(~71)*/a1I = I -P(70/71)  (pO/plPI. 

tities the jump relations (22) across the front become 

u271 = u172, 

U1(U1-U2) = y 3 - 1 ) + q ( 5 ) 2 - 1 ] ,  
Y1 P1 

The modified Hugoniot curve (24) is 
2 

+ 1 3y,62 Y1 

Y1- + 2 y 4  (:) - (1 + T )  
A comparison with the modified Hugoniot curve given by equation (1 1) confirms 
that the equation of the modified Hugoniot curve for combustion has a form 
appropriate to the magnetogasdynamic case a + p = 0 with the addition of an 
exothermal energy q. The form of this modified Hugoniot curve is that shown in 
figure 3 in the special case whenp,/pO = (yl - l)/(yo - 1)  at ~ ~ / 7 , ,  = 1. We proceed 
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to show that, in the magnetogasdynamic case as in ordinary gasdynamics, this 
curve is of a similar nature to the modified Hugoniot curve without combustion. 

First it  is noted from equation (28) that 

= x i + y 1 ( y 2 - 1 ) q ,  a t  - 7 2  = 1. 
P1 71- 71 

(29) 

Therefore, exactly as in ordinary gasdynamics, there is in general an excess 
pressure associated with combustion at constant volume; its value is independent 
of 6, the magnetic field parameter. The asymptotes of the adiabatic (28) are 

72 72-1 as & + m ,  -+- 
71 Y2+1' P1 

If y2 = y1 the first of these is the same as in ordinary gasdynamics. Both are 
independent of the exothermal energy release and identical with the corre- 
sponding asymptotes on the general ionization adiabatics. 

Now let us write equation (28) in the form 

+Ya-l Y2+1 [ l + ~ - G ( 6 ) ] ) - G ( 6 ) ,  (31) 

It is clear that the general shape of the Hugoniot curve represented by this 
equation may be obtained immediately by analogy with the earlier discussion 
following equations (14), (15) for the corresponding case of gas-ionizing shock 
waves. The singular Hugoniot curves when G(6) = 0 are identical with equations 
(16), (17)  in which 012, /32 are both replaced by 6 2  and suffices ( 0 , l )  by (1 ,  a), 
respectively. Furthermore, for all physically realistic combustion waves G(6) < 0. 
Thus the general shape of the modified Hugoniot curve for combustion is that 
shown in figure 4 for values of r2/r1 > 0. 

For comparative purposes the ordinary gasdynamic Hugoniot curve for com- 
bustion, for the same value of the exothermal energy and the same change of 
adiabatic index, is also shown on figure 4. The two curves have the same slope 
at the common point corresponding to combustion a t  constant volume. For 
combustion giving rise to an increase (decrease) of density the magnetogas- 
dynamic wave is associated with a greater (lesser) increase of pressure than occurs 
for the ordinary gasdynamic wave. In addition the Poisson isentrope is also 
shown on figure 4. The condition of entropy increase across the wave front then 
leads to the result that in magnetogasdynamics the maximum possible rare- 
faction across a combustion wave is less than that in the corresponding ordinary 
gasdynamic case. Finally, it  can be shown, by an analysis similar to that for a 
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gas-ionizing shock wave, that the mass flow is real across any combustion wave 
which satisfies the second law of thermodynamics. 

The concepts of weak and strong deflagrations call for examination in the light 
of the effects already noted above as a consequence of the interaction of the 
gasdynamic and electromagnetic energies. However, such a study is beyond the 
scope of the present paper. 

The research reported in this document has been sponsored in part by the 
Air Force Office of Scientific Research, OAR, through the European Office, 
Aerospace Research, United States Air Force. 
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FIGURE 4. Hugoniot curves for combustion. 
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